Slide 1

[image: image1.wmf]1

Then a miracle occurs:

The 2007 Stevens Lecture on Software

Development Methods

Nicholas Zvegintzov

zvegint

@hotmail.com

11th European Conference on Software

Maintenance and Reengineering

Thursday, March 22 2007, Amsterdam

“Then a miracle occurs”
The 2007 Stevens Lecture on Software Development Methods

Nicholas Zvegintzov
zvegint@hotmail.com

11th European Conference on Software Maintenance and Reengineering
Thursday, March 22, 2007, Amsterdam

Intro: Stevens

I stand up tonight in order to prevent you going on the Conference Dinner Cruise on the Salonboot Prins van Oranje for as long as I can by delivering The 2007 Stevens Lecture on Software Development Methods. I know Dinner is coming up – but don’t worry, I had a snack already and I can go on as long as necessary.

The Stevens Lectures on Software Development Methods ‘focus on lessons learned and challenges, with an emphasis on advancing or analyzing the state of software methods and their direction for the future’.

This prestigious award lecture (that’s what it says here) is named in memory of Wayne Stevens (1944-1993).

His 1974 IBM Systems Journal article ‘Structured Design’ was a landmark and has been widely reprinted ever since.
Slide 2

[image: image2.wmf]Then a miracle occurs

2

Stevens, Myers, and Constantine:

Structured design

n

Stevens, Myers, and Constantine:

Structured design

u

W. P. Stevens, G. J. Myers, L. L. Constantine.

Structured design. IBM Systems J., 13, 2, 1974,

115

-

139.

Stevens, Myers, and Constantine: Structured design

W. P. Stevens, G. J. Myers, L. L. Constantine. Structured design. IBM Systems J., 13, 2, 1974, 115-139.

I was interested to see, looking back at 1974 Stevens & al., that they write about “techniques for making coding, debugging, and modification easier, faster, and less expensive”. And “the ability to produce simple, changeable programs will become increasingly important”.

And look at this...
Slide 3

[image: image3.wmf]Then a miracle occurs

3

CITED REFERENCES AND FOOTNOTES

CITED REFERENCES AND FOOTNOTES

“It is becoming increasingly important to the data-processing industry to be able to produce more programming systems and produce them with fewer errors, at a faster rate, and in a way that modifications can be accomplished easily and quickly. Structured design considerations can help achieve this goal.”

In “CITED REFERENCES AND FOOTNOTES”...

“1. This method has not been submitted to any formal IBM test. Potential users should evaluate its usefulness in their own environment prior to implementation.”

No, not that one (though it’s nice to know that at one time methods promoters made disclaimers), but this one...
Slide 4

[image: image4.wmf]Then a miracle occurs

4

Belady

and Lehman:

Programming System Dynamics

Belady and Lehman: Programming System Dynamics or the Metadynamics of Systems in Maintenance and Growth

9. L. A. Belady and M. M. Lehman, “Programming System Dynamics or the Metadynamics of Systems in Maintenance and Growth”, RC 3546, IBM Thomas J. Watson Research Center, Yorktown Heights, New York (1971).

Thus if I had read the Stevens-Myers-Constantine article when it came out in 1974 I would have been alerted to the Belady-Lehman article of 1971 and I would have saved myself a few years of thrashing before I began to think of a question that has occupied me for 30 or so years (about half the entire history of software)...

Slide 5

[image: image5.wmf]Then a miracle occurs

5

Maintenance methods

n

What are good software maintenance

methods?

Methods

What are good software maintenance methods?

It seemed to me in 1977 that we ought to find good software maintenance methods.

For several reasons:

We could double our productivity – since as much effort goes into maintenance as into development.

We hadn’t found good software maintenance methods yet.

But we had found good software development methods.

And how much simpler, more secure, and more accurate they make software development!

Slide 6

[image: image6.wmf]Then a miracle occurs

6

Development methods

n

We already found good software

development methods!

Development methods

We already found good software development methods!

Slide 7

[image: image7.wmf]Then a miracle occurs

7

Development methods

n

We already found good software

development methods

u

Well, we will by the end of the year for sure!

Development methods

We already found good software development methods

Well, we will by the end of the year for sure!

Slide 8

[image: image8.wmf]Then a miracle occurs

8

Development methods

n

We found good software development methods

Flowcharts!

u

Well, we will by the end of the year for sure

Development methods

Flowcharts! Structured Design! Structured Programming! 4GLs! Client-server! Prototyping! UML! JAD! RAD! Spiral development! Object oriented! Patterns! Agile methods! Formal methods! ERP! Architectures! Open source! CMMI®! Outsourcing!
Slide 9

[image: image9.wmf]Then a miracle occurs

9

Development methods

n

We found good software development methods

Flowcharts!

Structured Design!

u

Well, we will by the end of the year for sure

Development methods

Slide 10

[image: image10.wmf]Then a miracle occurs

10

Development methods

n

We found good software development methods

Flowcharts!

Structured Design!

Structured Programming!

u

Well, we will by the end of the year for sure

Development methods

Slide 11

[image: image11.wmf]Then a miracle occurs

11

Development methods

n

We found good software development methods

Flowcharts!

Structured Design!

Structured Programming!

4GLs!

u

Well, we will by the end of the year for sure

Development methods

Slide 12

[image: image12.wmf]Then a miracle occurs

12

Development methods

n

We found good software development methods

Client

-

server!

Prototyping!

UML!

JAD!

RAD!

Spiral development!

Well, we will by the end of the year for sure

Development methods

Slide 13

[image: image13.wmf]Then a miracle occurs

13

Development methods

n

We found good software development methods

Object oriented!

Patterns!

Agile methods!

Formal methods!

ERP! Architectures! Open source!

CMMI

®

!

u

Well, we will by the end of the year for sure

Development methods

What miracles!

Slide 14

[image: image14.wmf]Then a miracle occurs

14

Development methods

n

We found good software development methods

n

Outsourcing!

Well, we will by the end of the year for sure

Development methods

Outsourcing... That’ll work for sure.

When we review all the miraculous development methods of the last 50 years, it seems like we’re talking a lot about methods but we’re not saying much.

One title I proposed for this talk was...
Slide 15

[image: image15.wmf]Then a miracle occurs

15

Muss man babbeln

n

Wovon man nicht sprechen kann,

dar

ü

ber muss man babbeln

n

Waar

men

niet

over

kan spreken

,

daar moet

men over

babbelen

n

What one cannot speak about

one must babble over

n

(What one cannot speak about one must

keep silent over)

Muss man babbeln

Wovon man nicht sprechen kann, darüber muss man babbeln

I am sure we can all agree on that.

Or, in plain language for this audience:

Waar men niet over kan spreken, daar moet men over babbelen

Still confused?

What one cannot speak about one must babble over

This of course is an adaptation of the famous last sentence of Wittgenstein’s Tractatus: What one cannot speak about one must keep silent over

Wittgenstein was a wise philosopher – he didn’t try to be a software guru.

But there has been distinctly less babbling over maintenance.

So – what are software maintenance methods?
Slide 16

[image: image16.wmf]Then a miracle occurs

16

So

–

what

are

software maintenance methods?

n

Are they in software maintenance

activities?

u

Functional enhancement

u

Correction

u

Adaptation to hardware and software changes

u

Software improvement

u

User support

n

No...

So – what are software maintenance methods?

Are they in software maintenance activities?

Software maintenance activities:

· Functional enhancement

· Correction

· Adaptation to hardware and software changes

· Software improvement

· User support

No... These are not methods. But they make explicit the maintenance activities that need to be aided by methods.
Slide 17

[image: image17.wmf]Then a miracle occurs

17

So

–

what

are

software maintenance methods?

n

Are they in software maintenance

processes?

No...

So – what are software maintenance methods?

Are they in software maintenance processes?

IEEE 1219-98 Maintenance Processes (from SWEBOK).

No... These are not methods either. But they make explicit the maintenance processes that need to be aided by methods.
Slide 18

[image: image18.wmf]Then a miracle occurs

18

So

–

what

are

software maintenance methods?

n

Are they in software maintenance

controls?

u

Service desk

u

Problem management

u

Change management

u

Configuration management

u

Verification and Validation

u

Release management

n

No...

So – what are software maintenance methods?

Are they in software maintenance controls?

Software maintenance controls:
 Service desk

 Problem management

 Change management

 Configuration management

 Verification and Validation

 Release management

No... These are not methods either. But they make explicit the maintenance controls under which the activities are accomplished.

These are not methods, but they point us to where the methods have to be.

Under the controls, within the processes, the software maintenance methods have to support the activities:
Slide 19

[image: image19.wmf]Then a miracle occurs

19

Where the methods go

n

Activity: Functional enhancement

n

Given: A specification of a

desired changed behavior

n

The maintainer must:

Change the

implemented system to perform

the desired specified behavior

Where the methods go

Let’s take just one activity...

Activity: Functional enhancement

Given: A specification of a desired changed behavior

()

The maintainer must: Change the implemented system to perform the desired specified behavior

So it’s clear where the methods go...
Slide 20

[image: image20.wmf]Then a miracle occurs

20

Where the methods go

n

Activity: Functional enhancement

n

Given: A specification of a

desired changed behavior

n

(Methods)

n

The maintainer must:

Change the

implemented system to perform

the desired specified behavior

Where the methods go

Activity: Functional enhancement

Given: A specification of a desired changed behavior

(Methods)

The maintainer must: Change the implemented system to perform the desired specified behavior

Let’s do a little exercise. Ready? Each person in the audience, raise your right hand. Good. Thank you. You can put your hands down.

So what happened here?
Slide 21

[image: image21.wmf]Then a miracle occurs

21

An exercise

n

So what happened here?

u

I spoke.

u

Sound entered your ears, vibrated your

cochleae, stimulated your auditory nerves.

u

You understood what was requested.

u

You decided to act.

u

Impulses went to your muscles.

u

You raised your hand.

An exercise

So what happened here?

I spoke.

Sound entered your ears, vibrated your cochleae, stimulated your auditory nerves.

You understood what was requested.

You decided to act.

Impulses went to your muscles.

You raised your hand.

Where could we help this process? With methods or with technology...

Slide 22

[image: image22.wmf]Then a miracle occurs

22

An exercise

n

Where could we help this process?

u

I spoke.

u

?

Sound entered your ears, vibrated your

cochleae, stimulated your auditory nerves.

u

?

You understood what was requested.

u

?

You decided to act.

u

?

Impulses went to your muscles.

u

?

You raised your hand.

An exercise

Raise your right hand...

Where could we help this process?

I spoke.

↑ Sound entered your ears, vibrated your cochleae, stimulated your auditory nerves.

↓ You understood what was requested.

↓ You decided to act.

↑ Impulses went to your muscles.

↑ You raised your hand.

Input...

If you are auditorily challenged, we can amplify, stimulate your auditory nerve, or convert to visual text.

If you are linguistically challenged we can translate.

Output...

If you are neurally challenged we can supplement your neural pathways.

If you are physically challenged we can provide alternate prosthetic peripherals.

We can help you best at the input/output peripherals of this cycle.

What about the part in the middle?

The unspoken truth is that we know very little indeed about what goes on here, or how people do it.

It reminds us of Sidney Harris’s cartoon, justly famous among thoughtful scientists, which provided the title for this speech:
Slide 23

[image: image23.wmf]Then a miracle occurs

23

“

Then a miracle occurs

”

©

Sidney Harris, originally

appeared in American Scientist in 1977, used with

permission.

“Then a miracle occurs”

“Dan gebeurt er een wonder”

“Then a miracle occurs” © Sidney Harris, originally appeared in American Scientist in 1977, used with permission.
Somehow we get from knowing what we want to do to figuring out how to do it to doing it.

We just rely on your being able to do it.

Similarly within the controls and the processes there is what maintainers actually do –

Slide 24

[image: image24.wmf]Then a miracle occurs

24

What maintainers do

n

What maintainers do

u

Activity: Functional enhancement

u

Given: A specification of a desired

changed behavior

u

Miracle? Method?

u

The maintainer must:

Change the

implemented system to perform the

desired specified behavior

What maintainers do

Activity: Functional enhancement

Given: A specification of a desired changed behavior

Is it a miracle? Is it a method?

The maintainer must: Change the implemented system to perform the desired specified behavior

Between the given and the must – is it a miracle? Is it a method?

But we know what maintainers do – we read it in SWEBOK...

Slide 25

[image: image25.wmf]Then a miracle occurs

25

What maintainers do

Alain

Abran

and James W. Moore, Executive Editors.

Guide to the Software Engineering Body of

Knowledge

-

SWEBOK

®

.

IEEE Computer Society, 2004. ISBN 0

-

7695

-

2330

-

7.

What maintainers do

From Alain Abran and James W. Moore, Executive Editors. Guide to the Software Engineering Body of Knowledge - SWEBOK®. IEEE Computer Society, 2004. ISBN 0-7695-2330-7.

They spend 40-60% of their time trying to understand.

This is a solid fact, of course, since it comes from software engineering textbooks...

{Dor02} M. Dorfman and R.H. Thayer, eds., Software Engineering (Vol. 1 & Vol. 2), IEEE Computer Society Press, 2002.

{Pfl01} S.L. Pfleeger, Software Engineering: Theory and Practice, second ed., Prentice Hall, 2001.

{Tak97} A. Takang and P. Grubb, Software Maintenance Concepts and Practice, International Thomson Computer Press, 1997.

And textbooks, where did they get it?

Here, for example it is in Shari Pfleeger’s textbook:
Slide 26

[image: image26.wmf]Then a miracle occurs

26

What maintainers do

Shari Lawrence

Pfleeger

:

Software engineering

–

Theory

and practice

. Prentice

-

Hall, Inc., 1998. ISBN 0

-

13

-

147364

-

6.

What maintainers do

From Shari Lawrence Pfleeger: Software engineering – Theory and practice. Prentice-Hall, Inc., 1998. ISBN 0-13-147364-6.

They spend 47% of their time trying to understand.

It came from here:
Slide 27

[image: image27.wmf]Then a miracle occurs

27

What maintainers do

Girish

Parikh and Nicholas Zvegintzov.

Tutorial on software maintenance

.

IEEE Computer Society Press,

1983. ISBN 0

-

8186

-

0002

-

0.

What maintainers do

From Girish Parikh and Nicholas Zvegintzov. Tutorial on software maintenance. IEEE Computer Society Press, 1983. ISBN 0-8186-0002-0.

They spend 47% of their time trying to understand.

Parikh and Zvegintzov in 1983 (actually a collection of readings).

And where did Parikh and Zvegintzov get it?

I happen to know.
Slide 28

[image: image28.wmf]Then a miracle occurs

28

What maintainers do

R. K.

Fjeldstad

and W. T.

Hamlen

.

Application program maintenance study

-

report to our

respondents

. In

GUIDE 48 Proceedings

, May 1979.

What maintainers do

They got it from R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study - report to our respondents. In GUIDE 48 Proceedings, May 1979. (Which is in the Tutorial.)

For Modifications & enhancements they spend time as follows: Define & understand the change 18%, Review documentation 6%, Trace logic 23%, for a total of 47%.

And where did they get it? From interviews...

“During the past several months [in 1978], twenty-five data processing installations have been visited in order to understand better the problems encountered in maintenance of application programs. Our purpose was first to define an acceptable structure of the tasks or activities involved in all application programming, thereby to determine those considered maintenance.”

So this is an example of idea-laundering, which is like money-laundering.

A person walks into a back-street check-cashing office with a suitcase full of dirty bills acquired from who knows what. From this is created a draft on a bank in the capital city. With this draft is bought some shares in an off-shore fund in the Bahamas. The proceeds of that appear in a bank account in Amsterdam. And in Amsterdam someone buys a mansion on Kloveniersburgwal and becomes a patron of the Opera and a pillar of society. Thus dirty money is laundered into clean money.

Idea laundering is the same, where a somewhat tenuous observation is repeated and stretched over many years until it became a respectable known and accepted truth.

In fact in the nearly 30 years since this citation maintainers at work have been observed far too little, if at all.

So back to what it is that maintainers are doing...
Slide 29

[image: image29.wmf]Then a miracle occurs

29

What maintainers do

n

What maintainers do

u

Activity: Functional enhancement

u

Given: A specification of a desired

changed behavior

u

Miracle? Method?

u

The maintainer must:

Change the

implemented system to perform the

desired specified behavior

What maintainers do

Activity: Functional enhancement

Given: A specification of a desired changed behavior

Miracle? Method?

The maintainer must: Change the implemented system to perform the desired specified behavior

Between a change request and a change – Is it a miracle? Is it a method?

What we observe by:

. Being a maintainer

. Or observing maintainers

. Or questioning maintainers

. Or even testing maintainers...

The maintainer reasons about:
. What the current system is doing.
. How the current system is implemented.
. How these two relate.
. What the change of behavior entails.
. How to relate that to the implementation.
. Steps to implement the change.
It is...
Slide 30

[image: image30.wmf]Then a miracle occurs

30

What maintainers do

n

What maintainers do

u

Activity: Functional enhancement

u

Given: A specification of a desired

changed behavior

u

Problem

-

solving

, applied

reasoning

u

The maintainer must:

Change the

implemented system to perform the

desired specified behavior

What maintainers do

... problem-solving, applied reasoning

Just as we take for granted that if you decide to raise your right hand, you can, so we take for granted that if we know what change of behavior we want then in some way we can implement it.

Activity: Functional enhancement

Given: A specification of a desired changed behavior

Problem-solving, applied reasoning

The maintainer must: Change the implemented system to perform the desired specified behavior

What is problem-solving?
Slide 31

[image: image31.wmf]Then a miracle occurs

31

How to create and modify software

Assess

Carry out steps

Visualize actions, sequence of

steps

Define the goal

Know the capabilities of

materials

Know materials

Problem

-

solving

How to create and modify software

Problem-solving is what enables human beings to get done almost anything that is more than rote and more than passive.

It is evidently an innate capability of human beings, and a general capability that can be applied to any kind of context.

It comprises...

Problem-solving:

. Know materials

. Know the capabilities of materials

. Define the goal

. Visualize actions, sequence of steps  this may be an iterative quest with multiple attempts

. Carry out steps

. Assess

Problem solving is a general capacity, but we apply it to a problem in a particular context by applying the methods available in that contect.

For example, cooking a meal...
Slide 32

[image: image32.wmf]Then a miracle occurs

32

How to create and modify software

Eat

Assess

Prep, mix, cook, garnish

Carry out steps

The recipe

Visualize actions, sequence of

steps

The dish

Define the goal

Taste, peeling, chopping,

cooking, decoration, etc.

Know the capabilities of

materials

Vegetables, meats,

seasonings

Know materials

Cooking

Problem

-

solving

How to create and modify software

Cooking

. Vegetables, meats, seasonings

. Taste, peeling, chopping, cooking, decoration, etc.

. The dish

. The recipe

. Prep, mix, cook, garnish

. Eat

And what are the problem-solving steps in modifying software?
Slide 33

[image: image33.wmf]Then a miracle occurs

33

How to create and modify software

Exercise and test

Assess

Programming

Carry out steps

Design

Visualize actions, sequence of

steps

Change request

Define the goal

Syntax, semantics

Know the capabilities of

materials

Programming and data

language(s)

Know materials

Modify software

Problem

-

solving

How to create and modify software

Modify software

. Programming and data language(s)

. Syntax, semantics

. Change request

. Design

. Programming

. Exercise and test

Is there a method to this process? How do we learn it or teach it?

There is a general method, namely the items set out in the left column.

There are particular materials and capabilities of materials specified in the first 2 rows.

And there is the hard process named in line 4.

There are some examples of teaching problem-solving, for example George Polya’s famous book How to solve it...

Slide 34

[image: image34.wmf]Then a miracle occurs

34

How to create and modify software

George

Polya

.

How to solve it: A new

aspect of mathematical method

.

Princeton University Press, 1945. ISBN

0

-

691

-

08097

-

6.

How to create and modify software

George Polya. How to solve it: A new aspect of mathematical method. Princeton University Press, 1945. ISBN 0-691-08097-6.

I was interested to see when I looked back at Polya’s book that it has “method” in its title.

It gives a method for approaching a mathematical problem, and a checklist or reminder list of mathematical methods. It also emphasizes that it’s a struggle, it’s a mental exercise, it’s a search that requires patience and persistence.

I’m not sure there is any book like Polya’s about programming. Perhaps there should be!

But the ability to perform this problem-solving in life and in mathematics and in programming is learned not from a book but by practice...

Slide 35

[image: image35.wmf]Then a miracle occurs

35

How to create and modify software

Experience, discipline

Assess

Observation, practice, critique

Carry out steps

Observation, practice, critique

Visualize actions, sequence of

steps

Observation, practice, critique

Define the goal

Study, use, observation

Know the capabilities of

materials

Study, use

Know materials

Learn problem

-

solving

Problem

-

solving

How to create and modify software

How do we learn / teach problem-solving?

. Study, use

. Study, use, observation

. Observation, practice, critique  Many examples through childhood and education with practice and correction

. Observation, practice, critique

. Observation, practice, critique

. Experience, discipline

The knowledge of materials and the capabilities of materials is the most specific part of the process, and it is by a shift in these that a problem-solver shifts from cooking with food to programming with C++.

Clearly the human potentiality for problem-solving is innate but we learn it by practice and by teaching and critique on innumerable examples, both generally and in a specific context.

Note that column 2 is not a method.

There is not much in column 2, especially below row 1 and 2, that you can wheel in or move onto the work floor or teach in a 2-day course or put on the shelf in the cubicle or post up on a whiteboard to support the activity.

It’s a longitudinal or lifetime activity or at the least represents many years of practice, starting in infancy on infant problems, and becoming specific to the professional context only in later education or even on the job..

You can tell how much complexity there is in the problem-solving by looking at the formal methods literature, and seeing the sheer bulk of material required for expressing explicitly why the implementation satisfies the specification, or even at documentation (if it were still created in 2007) and seeing the sheer bulk of material required just for expressing function and use.

And neither of these expresses the problem-solving that went into creating or modifying the implementation.

I believe that after 65 years of software, 45 of which I have personally observed and participated in, we still have software created and modified by people who have proved themselves able to do it without necessarily having any training in it, and we still have not codified any real Method for the inner process of creating and modifying software. (Only 1/3 of software professionals were trained in software, and those that were confess in later interviews that they learned many important things on the job.)

In the middle of my career I was confronted with a wrang-wrang.
Slide 36

[image: image36.wmf]Then a miracle occurs

36

A software maintenance

wrang

-

wrang

n

A

wrang

-

wrang

(definition):

u

“

A person who steers people away from a line of

speculation by reducing that line, with the

example of the

wrang

-

wrang's

own life, to an

absurdity

”

Kurt Vonnegut.

Cat

’

s cradle

.

A software maintenance wrang-wrang

A wrang-wrang (definition):

“A person who steers people away from a line of speculation by reducing that line, with the example of the wrang-wrang's own life, to an absurdity”

Kurt Vonnegut. Cat’s cradle.

In my case it wasn’t a person but some kind of madness of crowds...
Slide 37

[image: image37.wmf]Then a miracle occurs

37

A software maintenance

wrang

-

wrang

Y2K!

Y2K!

For those of you too young to remember it was the observation, conviction, or phobia that software systems that represented years by their last two digits (97, 98, 99, ...) would fail and give wrong results when the year turned to 2000, since, for example “00” would sort as before “99”.

It was a huge opportunity for babbling, in which software maintainers were portrayed in a ludicrous and humiliating light both before and after.

It took me a long while to see beyond the nonsense to what it taught.

It is about the only example I know where a software maintenance process was enough repeatable to be codified as a Method (by this I mean the process of looking for candidate dates and times in code, evaluating them, tracing their action, and renovating their structure), and even this Method, believe me, took major problem-solving and creativity to create.

This is an example of what is sometimes called “mass maintenance”.

I know that some people in this audience were pioneers in this.

But it is my conclusion that – these unusual examples of mass maintenance apart – that we are forced...

Slide 38

[image: image38.wmf]Then a miracle occurs

38

What are good software maintenance methods?

n

What are good software maintenance

methods?

u

We keep silent

u

We babble

What are good software maintenance methods?

... A little to keep silent over what are good software maintenance methods.

We keep silent

or

We babble

It is my conclusion that it is the difficulty and inexpressibility of the central crucial problem-solving step of maintenance that makes us tongue-tied about what are good software maintenance methods.

Either tongue-tied, or if forced to speak, babbling.

But is it just about maintenance methods? I don’t think so. The difficulty applies just as much to development methods.
Slide 39

[image: image39.wmf]Then a miracle occurs

39

What are good software maintenance methods?

n

What are good software maintenance

methods?

n

What are good software development

methods?

u

We keep silent

u

We babble

What are good software maintenance methods?

What are good software development methods?

What one cannot speak about one must babble over

What one cannot speak about one must keep silent over

It is not that development does not have the same problems as maintenance. It is because maintenance has been more ready to confront those problems.

I believe that development babbling has been diverted into...
Slide 40

[image: image40.wmf]Then a miracle occurs

40

What are good software maintenance methods?

n

We found good software development

methods ;

-

)

u

New languages

u

Bragging over new languages

u

More development will solve the problems of

existing development

u

“

Design

”

means decomposition and diagramming

We found good software development methods ;-)

. New languages

. Bragging over new languages

. More development will solve the problems of existing development <-- sounds circular to me

. “Design” means decomposition and diagramming <-- processes that are already done in maintenance

In the development arena people have been too concerned with grand plans for synthesis to attend to the humble plans for analysis, problem-solving, applied reasoning...

Slide 41

[image: image41.wmf]Then a miracle occurs

41

What are good software maintenance methods?

Analysis...

Problem

-

solving...

Applied

reasoning...

Analysis... Problem-solving... Applied reasoning...
This is what we have to use when problems take over.

The software maintainer is not distracted with false hopes.

The language has been chosen, for better or for worse.

The decomposition has been performed, for better or for worse.

The diagramming, if done at all, is done by reverse engineering not by wise design.

Therefore software maintainers are pragmatic.

After 35 years I can tell you there is no better detector of babbling than a software maintainer. They live day to day in that tough inner process of problem-solving.

And to give you and us credit, for at least 25 years we have been beating our heads against the hard questions: What do maintainers do? What do maintainers know? What do maintainers use? You too are pragmatic.

European Conference on Software Maintenance and Reengineering

ICSM The IEEE International Conference on Software Maintenance

IEEE International Conference on Program Comprehension (ICPC)

Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM)

Eighth IEEE International Symposium on Web Site Evolution

Second International IEEE Workshop on Software Evolvability

Third International ERCIM Symposium on Software Evolution...

Which brings me to the rather modest lesson I draw from this enquiry.

Slide 42

[image: image42.wmf]Then a miracle occurs

42

What are good software maintenance methods?

n

What are good software maintenance

methods?

u

We should not remain silent

u

We should not babble

What are good software maintenance methods?

We should not remain silent
We should not babble

And...

Harris’s cartoon in fact has a caption, which I didn’t show you before...
Slide 43

[image: image43.wmf]Then a miracle occurs

43

What are good software maintenance methods?

“

Then a miracle occurs

”

©

Sidney

Harris, originally appeared in

American Scientist in 1977, used

with permission.

“I think you should be more explicit here in step 2”

“I think you should be more explicit here in step 2” © Sidney Harris, originally appeared in American Scientist in 1977, used with permission.

(This is in fact what Sidney Harris himself calls this cartoon.)

Little by little we must make Step 2 more explicit.

I give this community – your community – immense credit for your investigations and patient work.

With it little by little we shall begin to find method in the miracle of how we create and maintain software.
Slide 44

[image: image44.wmf]Then a miracle occurs

44

What are good software maintenance methods?

n

What are good software maintenance

methods?

u

We should not remain silent

u

We should not babble

u

We should be more explicit here in step 2

What are good software maintenance methods?

We should not remain silent
We should not babble
We should be more explicit here in step 2
Slide 45

[image: image45.wmf]45

The 2007 Stevens Lecture on

Software Development Methods

“

Then a miracle occurs

”

“

Dan

gebeurt er een

wonder

”

Thank you

Dank u

The 2007 Stevens Lecture on Software Development Methods

“Then a miracle occurs”
“Dan gebeurt er een wonder”

Thank you
Dank u

Slide 46

[image: image46.wmf]Then a miracle occurs

46

_1240663612.ppt

So – what are software maintenance methods?

		Are they in software maintenance activities?

		Functional enhancement

		Correction

		Adaptation to hardware and software changes

		Software improvement

		User support

		No...

So – what are software maintenance methods?

Are they in software maintenance activities?

Software maintenance activities:

· Functional enhancement

· Correction

· Adaptation to hardware and software changes

· Software improvement

· User support

No... These are not methods. But they make explicit the maintenance activities that need to be aided by methods.

_1240663654.ppt

What maintainers do

		What maintainers do

		Activity: Functional enhancement

		Given: A specification of a desired changed behavior

		Miracle? Method?

		The maintainer must: Change the implemented system to perform the desired specified behavior

What maintainers do

Activity: Functional enhancement

Given: A specification of a desired changed behavior

Is it a miracle? Is it a method?

The maintainer must: Change the implemented system to perform the desired specified behavior

Between the given and the must – is it a miracle? Is it a method?

But we know what maintainers do – we read it in SWEBOK...

_1240663702.ppt

How to create and modify software

		Problem-solving		Cooking

		Know materials		Vegetables, meats, seasonings

		Know the capabilities of materials		Taste, peeling, chopping, cooking, decoration, etc.

		Define the goal		The dish

		Visualize actions, sequence of steps		The recipe

		Carry out steps		Prep, mix, cook, garnish

		Assess		Eat

How to create and modify software

Cooking

Vegetables, meats, seasonings

Taste, peeling, chopping, cooking, decoration, etc.

The dish

The recipe

Prep, mix, cook, garnish

Eat

And what are the problem-solving steps in modifying software?

_1240663727.ppt

A software maintenance wrang-wrang

		A wrang-wrang (definition):

		“A person who steers people away from a line of speculation by reducing that line, with the example of the wrang-wrang's own life, to an absurdity”

Kurt Vonnegut.

Cat’s cradle.

A software maintenance wrang-wrang

A wrang-wrang (definition):

“A person who steers people away from a line of speculation by reducing that line, with the example of the wrang-wrang's own life, to an absurdity”

Kurt Vonnegut. Cat’s cradle.

In my case it wasn’t a person but some kind of madness of crowds...

_1240663750.ppt

What are good software maintenance methods?

		We found good software development methods ;-)

		New languages

		Bragging over new languages

		More development will solve the problems of existing development

		“Design” means decomposition and diagramming

We found good software development methods ;-)

New languages

Bragging over new languages

More development will solve the problems of existing development <-- sounds circular to me

“Design” means decomposition and diagramming <-- processes that are already done in maintenance

In the development arena people have been too concerned with grand plans for synthesis to attend to the humble plans for analysis, rpoblem-solving, applied reasoning...

_1240663764.ppt

What are good software maintenance methods?

		What are good software maintenance methods?

		We should not remain silent

		We should not babble

What are good software maintenance methods?

We should not remain silent

We should not babble

And...

Harris’s cartoon in fact has a caption, which I didn’t show you before...

_1240663774.ppt

What are good software maintenance methods?

		What are good software maintenance methods?

		We should not remain silent

		We should not babble

		We should be more explicit here in step 2

What are good software maintenance methods?

We should not remain silent

We should not babble

We should be more explicit here in step 2

_1240663778.ppt

The 2007 Stevens Lecture on Software Development Methods

“Then a miracle occurs”

“Dan gebeurt er een wonder”

Thank you

Dank u

The 2007 Stevens Lecture on Software Development Methods

“Then a miracle occurs”

“Dan gebeurt er een wonder”

Thank you

Dank u

5%

_1240663783.ppt

_1240663769.ppt

What are good software maintenance methods?

“Then a miracle occurs” © Sidney Harris, originally appeared in American Scientist in 1977, used with permission.

“I think you should be more explicit here in step 2”

“I think you should be more explicit here in step 2” © Sidney Harris, originally appeared in American Scientist in 1977, used with permission.

(This is in fact what Sidney Harris himself calls this cartoon.)

Little by little we must make Step 2 more explicit.

I give this community – your community – immense credit for your investigations and patient work.

With it little by little we shall begin to find method in the miracle of how we create and maintain software.

T TINK You SHOWD B2 MORE
EXPLIUT HEZE IN STEP WO,V

_1240663754.ppt

What are good software maintenance methods?

Analysis...

Problem-solving...

Applied reasoning...

Analysis... Problem-solving... Applied reasoning...

This is what we have to use when problems take over.

The software maintainer is not distracted with false hopes.

The language has been chosen, for better or for worse.

The decomposition has been performed, for better or for worse.

The diagramming, if done at all, is done by reverse engineering not by wise design.

Therefore software maintainers are pragmatic.

After 35 years I can tell you there is no better detector of babbling than a software maintainer. They live day to day in that tough inner process of problem-solving.

And to give you and us credit, for at least 25 years we have been beating our heads against the hard questions: What do maintainers do? What do maintainers know? What do maintainers use? You too are pragmatic.

European Conference on Software Maintenance and Reengineering

ICSM The IEEE International Conference on Software Maintenance

IEEE International Conference on Program Comprehension (ICPC)

Sixth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM)

Eighth IEEE International Symposium on Web Site Evolution

Second International IEEE Workshop on Software Evolvability

Third International ERCIM Symposium on Software Evolution...

Which brings me to the rather modest lesson I draw from this enquiry.

Prmm ms Taking Over’

_1240663741.ppt

What are good software maintenance methods?

		What are good software maintenance methods?

		We keep silent

		We babble

What are good software maintenance methods?

... A little to keep silent over what are good software maintenance methods.

We keep silent

or

We babble

It is my conclusion that it is the difficulty and inexpressibility of the central crucial problem-solving step of maintenance that makes us tongue-tied about what are good software maintenance methods.

Either tongue-tied, or if forced to speak, babbling.

But is it just about maintenance methods? I don’t think so. The difficulty applies just as much to development methods.

_1240663746.ppt

What are good software maintenance methods?

		What are good software maintenance methods?

		What are good software development methods?

		We keep silent

		We babble

What are good software maintenance methods?

What are good software development methods?

What one cannot speak about one must babble over

What one cannot speak about one must keep silent over

It is not that development does not have the same problems as maintenance. It is because maintenance has been more ready to confront those problems.

I believe that development babbling has been diverted into...

_1240663733.ppt

A software maintenance wrang-wrang

Y2K!

Y2K!

For those of you too young to remember it was the observation, conviction, or phobia that software systems that represented years by their last two digits (97, 98, 99, ...) would fail and give wrong results when the year turned to 2000, since, for example “00” would sort as before “99”.

It was a huge opportunity for babbling, in which software maintainers were portrayed in a ludicrous and humiliating light both before and after.

It took me a long while to see beyond the nonsense to what it taught.

It is about the only example I know where a software maintenance process was enough repeatable to be codified as a Method (by this I mean the process of looking for candidate dates and times in code, evaluating them, tracing their action, and renovating their structure), and even this Method, believe me, took major problem-solving and creativity to create.

This is an example of what is sometimes called “mass maintenance”.

I know that some people in this audience were pioneers in this.

But it is my conclusion that – these unusual examples of mass maintenance apart – that we are forced...

WEEKLY WOKLD

LA CRASH OF THE

ARY 1, 2000

P T ALL BANKS WILL FAIL!

FOOD SUPPLIES
WILL BE DEPLETED!

ELECTRICITY
WILL BE CUT OFF!

THE STOCK MARKET
WILL CRASH!

VEHICLES USING
COMPUTER CHIPS
WILL STOP DEAD!

TELEPHONES WILL
CEASE TO FUNCTION!

DOMINO EFFECT WILL CAUSE
A WORLDWIDE g

oeehession: i1 H

|

_1240663711.ppt

How to create and modify software

George Polya. How to solve it: A new aspect of mathematical method.

Princeton University Press, 1945. ISBN 0-691-08097-6.

How to create and modify software

George Polya. How to solve it: A new aspect of mathematical method. Princeton University Press, 1945. ISBN 0-691-08097-6.

I was interested to see when I looked back at Polya’s book that it has “method” in its title.

It gives a method for approaching a mathematical problem, and a checklist or reminder list of mathematical methods. It also emphasizes that it’s a struggle, it’s a mental exercise, it’s a search that requires patience and persistence.

I’m not sure there is any book like Polya’s about programming. Perhaps there should be!

But the ability to perform this problem-solving in life and in mathematics and in programming is learned not from a book but by practice...

How to Solve It
A New Aspect o
Mathematical Method

SECOND EDITION

_1240663720.ppt

How to create and modify software

		Problem-solving		Learn problem-solving

		Know materials		Study, use

		Know the capabilities of materials		Study, use, observation

		Define the goal		Observation, practice, critique

		Visualize actions, sequence of steps		Observation, practice, critique

		Carry out steps		Observation, practice, critique

		Assess		Experience, discipline

How to create and modify software

How do we learn / teach problem-solving?

Study, use

Study, use, observation

Observation, practice, critique  Many examples through childhood and education with practice and correction

Observation, practice, critique

Observation, practice, critique

Experience, discipline

The knowledge of materials and the capabilities of materials is the most specific part of the process, and it is by a shift in these that a problem-solver shifts from cooking with food to programming with C++.

Clearly the human potentiality for problem-solving is innate but we learn it by practice and by teaching and critique on innumerable examples, both generally and in a specific context.

Note that column 2 is not a method.

There is not much in column 2, especially below row 1 and 2, that you can wheel in or move onto the work floor or teach in a 2-day course or put on the shelf in the cubicle or post up on a whiteboard to support the activity.

It’s a longitudinal or lifetime activity or at the least represents many years of practice, starting in infancy on infact problems, and becoming specific to the professional context only in later education or even on the job..

You can tell how much complexity there is in the problem-solving by looking at the formal methods literature, and seeing the sheer bulk of material required for expressing explicitly why the implementation satisfies the specification, or even at documentation (if it were still created in 2007) and seeing the sheer bulk of material required just for expressing function and use.

And neither of these expresses the problem-solving that went into creating or modifying the implementation.

I believe that after 65 years of software, 45 of which I have personally observed and participated in, we still have software created and modified by people who have proved themselves able to do it without necessarily having any training in it, and we still have not codified any real Method for the inner process of creating and modifying software. (Only 1/3 of software professionals were trained in software, and those that were confess in later interviews that they learned many important things on the job.)

In the middle of my career I was confronted with a wrang-wrang.

_1240663706.ppt

How to create and modify software

		Problem-solving		Modify software

		Know materials		Programming and data language(s)

		Know the capabilities of materials		Syntax, semantics

		Define the goal		Change request

		Visualize actions, sequence of steps		Design

		Carry out steps		Programming

		Assess		Exercise and test

How to create and modify software

Modify software

Programming and data language(s)

Syntax, semantics

Change request

Design

Programming

Exercise and test

Is there a method to this process? How do we learn it or teach it?

There is a general method, namely the items set out in the left column.

There are particular materials and capabilities of materials specified in the first 2 rows.

And there is the hard process named in line 4.

There are some examples of teaching problem-solving, for example George Polya’s famous book How to solve it...

_1240663678.ppt

What maintainers do

R. K. Fjeldstad and W. T. Hamlen.

Application program maintenance study - report to our respondents. In GUIDE 48 Proceedings, May 1979.

What maintainers do

They got it from R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study - report to our respondents. In GUIDE 48 Proceedings, May 1979. (Which is in the Tutorial.)

For Modifications & enhancements they spend time as follows: Define & understand the change 18%, Review documentation 6%, Trace logic 23%, for a total of 47%.

And where did they get it? From interviews...

“During the past several months [in 1978], twenty-five data processing installations have been visited in order to understand better the problems encountered in maintenance of application programs. Our purpose was first to define an acceptable structure of the tasks or activities involved in all application programming, thereby to determine those considered maintenance.”

So this is an example of idea-laundering, which is like money-laundering.

A per5son walks into a back-street check-cashing office with a suitcase full of dirty bills acquired from who knows what. From this is created a draft on a back in the capital city. With this draft is bought some shares in an off-shore fund in the Bahamas. The proceeds of that appear in a bank account in Amsterdam. And in Amsterdam someone buys a mansion on Kloveniersburgwal and becomes a patron of the Opera and a pillar of society. Thus dirty money is laundered into clean money.

Idea laundering is the same, where a somewhat tenuous observation is repeated and stretched over many years until it became a respectable known and accepted truth.

In fact in the nearly 30 years since this citation maintainers at work have been observed far too little, if at all.

So back to what it is that maintainers are doing...

Programming Resources in the Maintenance Process

As we defined it, the maintenance process consisted of modifi-
cation, enhancement, and correction of programs in the produc-
tion library. In each of these activities of change to existing
‘programs, understanding the intent and style of ‘implementation
of ‘the original programmer was. the major cause of time and
difficulty in making the change.

CHART 6

CHANGE PROCESS

MODIFICATIONS
& CORRECTIONS
ENHANCEMENTS
(%) (%)
DEFINE & UNDERSTAND THE CHANGE 18 25
REVIEW DocoMEwmATION 6 .
T I 33
:;;!EﬁEE5'E5KEEE'"""""""""":;" 5 e o
“TEST - 28 .20

‘UBDATE DOCUMENTATION 6 3

_1240663693.ppt

What maintainers do

		What maintainers do

		Activity: Functional enhancement

		Given: A specification of a desired changed behavior

		Problem-solving, applied reasoning

		The maintainer must: Change the implemented system to perform the desired specified behavior

What maintainers do

... problem-solving, applied reasoning

Just as we take for granted that if you decide to raise your right hand, you can, so we take for granted that if we know what change of behavior we want then in some way we can implement it.

Activity: Functional enhancement

Given: A specification of a desired changed behavior

Problem-solving, applied reasoning

The maintainer must: Change the implemented system to perform the desired specified behavior

What is problem-solving?

_1240663697.ppt

How to create and modify software

		Problem-solving

		Know materials		

		Know the capabilities of materials

		Define the goal		

		Visualize actions, sequence of steps

		Carry out steps		

		Assess

How to create and modify software

Problem-solving is what enables human beings to get done almost anything if it is more than rote and more than passive.

It is evidently an innate capability of human beings, and a general capability that can be applied to any kind of context.

It comprises...

Problem-solving:

Know materials

Know the capabilities of materials

Define the goal

Visualize actions, sequence of steps  this may be an iterative quest with multiple sattempts

Carry out steps

Assess

Problem solving is a general capacity, but we apply it to a problem in a particular context by applying the methods available in that contect.

For example, cooking a meal...

_1240663686.ppt

What maintainers do

		What maintainers do

		Activity: Functional enhancement

		Given: A specification of a desired changed behavior

		Miracle? Method?

		The maintainer must: Change the implemented system to perform the desired specified behavior

What maintainers do

Activity: Functional enhancement

Given: A specification of a desired changed behavior

Miracle? Method?

The maintainer must: Change the implemented system to perform the desired specified behavior

Between a change request and a change – Is it a miracle? Is it a method?

What we observe by:

. Being a maintainer

. Or observing maintainers

. Or questioning maintainers

. Or even testing maintainers...

The maintainer reasons about:

What the current system is doing.

How the current system is implemented.

How these two relate.

What the change of behavior entails.

How to relate that to the implementation.

Steps to implement the change.

It is...

_1240663665.ppt

What maintainers do

Shari Lawrence Pfleeger: Software engineering – Theory and practice. Prentice-Hall, Inc., 1998. ISBN 0-13-147364-6.

What maintainers do

From Shari Lawrence Pfleeger: Software engineering – Theory and practice. Prentice-Hall, Inc., 1998. ISBN 0-13-147364-6.

They spend 47% of their time trying to understand.

It came from here:

Limited Understanding. In addition to balancing user needs with software and
hardware needs, the maintenance team deals with the limitations of human under-
standing. There is a limit to the rate at which a person can study documentation and
extract material relevant to the problem being solved. Furthermore, we usually look
for more clues than are really necessary for solving a problem Adding

Parlkh and Zvegmtzov report that 47% of software maintenance effort is
devoted to understandmg the software to be modlﬁed ThlS high figure is
able when we con e interfa hat n ked whenever a

hanged. For example, if a system has m components and we need to
change k of them, there are

kx(m—k)+kx*(k—1)/2

_1240663673.ppt

What maintainers do

Girish Parikh and Nicholas Zvegintzov. Tutorial on software maintenance. IEEE Computer Society Press, 1983. ISBN 0-8186-0002-0.

What maintainers do

From Girish Parikh and Nicholas Zvegintzov. Tutorial on software maintenance. IEEE Computer Society Press, 1983. ISBN 0-8186-0002-0.

They spend 47% of their time trying to understand.

Parikh and Zvegintzov in 1983 (actually a collection of readings).

And where did Parikh and Zvegintzov get it?

I happen to know.

TUTORIAL ON

Soltware Maintenance

" GIRISH PARIKH & NICHOLAS ZVEGINTZOV

_1240663659.ppt

What maintainers do

Alain Abran and James W. Moore, Executive Editors. Guide to the Software Engineering Body of Knowledge - SWEBOK®.

IEEE Computer Society, 2004. ISBN 0-7695-2330-7.

What maintainers do

From Alain Abran and James W. Moore, Executive Editors. Guide to the Software Engineering Body of Knowledge - SWEBOK®.

IEEE Computer Society, 2004. ISBN 0-7695-2330-7.

They spend 40-60% of their time trying to understand.

This is a solid fact, of course, since it comes from software engineering textbooks...

{Dor02} M. Dorfman and R.H. Thayer, eds., Software Engineering (Vol. 1 & Vol. 2), IEEE Computer Society Press, 2002.

{Pfl01} S.L. Pfleeger, Software Engineering: Theory and Practice, second ed., Prentice Hall, 2001.

{Tak97} A. Takang and P. Grubb, Software Maintenance Concepts and Practice, International Thomson Computer Press, 1997.

And textbooks, where did they get it?

Here, for example it is in Shari Pfleeger’s textbook:

SUVEBOL

2.1.1. Limited understanding
[Dor02:v1c9s1.11.4; Pfl01:c11s11.3; Tak97:c3]

Limited understanding refers to how quickly a software
engineer can understand where to make a change or a
correction in software which this individual did not
develop. Research indicates that some 40% to 60% of the
maintenance effort is devoted to understanding the
software to be modified. Thus, the topic of software
comprehension is of great interest to software engineers.

_1240663634.ppt

Where the methods go

		Activity: Functional enhancement

		Given: A specification of a desired changed behavior

		(Methods)

		The maintainer must: Change the implemented system to perform the desired specified behavior

Where the methods go

Activity: Functional enhancement

Given: A specification of a desired changed behavior

(Methods)

The maintainer must: Change the implemented system to perform the desired specified behavior

Let’s do a little exercise. Ready? Each person in the audience, raise your right hand. Good. Thank you. You can put your hands down.

So what happened here?

_1240663642.ppt

An exercise

		Where could we help this process?

		I spoke.

		↑ Sound entered your ears, vibrated your cochleae, stimulated your auditory nerves.

		↓ You understood what was requested.

		↓ You decided to act.

		↑ Impulses went to your muscles.

		↑ You raised your hand.

An exercise

Raise your right hand...

Where could we help this process?

I spoke.

↑ Sound entered your ears, vibrated your cochleae, stimulated your auditory nerves.

↓ You understood what was requested.

↓ You decided to act.

↑ Impulses went to your muscles.

↑ You raised your hand.

Input...

If you are auditorily challenged, we can amplify, stimulate your auditory nerve, or convert to visual text.

If you are linguistically challenged we can translate.

Output...

If you are neurally challenged we can supplement your neural pathways.

If you are physically challenged we can provide alternate prosthetic peripherals.

We can help you best at the input/output peripherals of this cycle.

What about the part in the middle?

The unspoken truth is that we know very little indeed about what goes on here, or how people do it.

It reminds us of Sidney Harris’s cartoon, justly famous among thoughtful scientists, which provided the title for this speech:

_1240663649.ppt

“Then a miracle occurs” © Sidney Harris, originally appeared in American Scientist in 1977, used with permission.

“Then a miracle occurs”

“Dan gebeurt er een wonder”

“Then a miracle occurs” © Sidney Harris, originally appeared in American Scientist in 1977, used with permission.

Somehow we get from knowing what we want to do to figuring out how to do it to doing it.

We just rely on your being able to do it.

Similarly within the controls and the processes there is what maintainers actually do –

T TINK You SHOWD B2 MORE
EXPLIUT HEZE IN STEP WO,V

_1240663638.ppt

An exercise

		So what happened here?

		I spoke.

		Sound entered your ears, vibrated your cochleae, stimulated your auditory nerves.

		You understood what was requested.

		You decided to act.

		Impulses went to your muscles.

		You raised your hand.

An exercise

So what happened here?

I spoke.

Sound entered your ears, vibrated your cochleae, stimulated your auditory nerves.

You understood what was requested.

You decided to act.

Impulses went to your muscles.

You raised your hand.

Where could we help this process? With methods or with technology...

_1240663623.ppt

So – what are software maintenance methods?

		Are they in software maintenance controls?

		Service desk

		Problem management

		Change management

		Configuration management

		Verification and Validation

		Release management

		No...

So – what are software maintenance methods?

Are they in software maintenance controls?

Software maintenance controls:

· Service desk

· Problem management

· Change management

· Configuration management

· Verification and Validation

· Release management

No... These are not methods either. But they make explicit the maintenance controls under which the activities are accomplished.

These are not methods, but they point us to where the methods have to be.

Under the controls, within the processes, the software maintenance methods have to support the activities:

_1240663629.ppt

Where the methods go

		Activity: Functional enhancement

		Given: A specification of a desired changed behavior

		The maintainer must: Change the implemented system to perform the desired specified behavior

Where the methods go

Let’s take just one activity...

Activity: Functional enhancement

Given: A specification of a desired changed behavior

The maintainer must: Change the implemented system to perform the desired specified behavior

So it’s clear where the methods go...

_1240663617.ppt

So – what are software maintenance methods?

		Are they in software maintenance processes?

No...

So – what are software maintenance methods?

Are they in software maintenance processes?

IEEE 1219-98 Maintenance Processes (from SWEBOK).

No... These are not methods either. But they make explicit the maintenance processes that need to be aided by methods.

Analysis

‘Classification
L3
Identification

Modification

Request
Delivery

Implementation

Acceptance
Test

Figure 2 The IEEE1219-98 Maintenance Process Activities

_1240663583.ppt

Development methods

		We found good software development methods

 Flowcharts!

		Well, we will by the end of the year for sure

Development methods

Flowcharts! Structured Design! Structured Programming! 4GLs! Client-server! Prototyping! UML! JAD! RAD! Spiral development! Object oriented! Patterns! Agile methods! Formal methods! ERP! Architectures! Open source! CMMI®! Outsourcing!

_1240663596.ppt

Development methods

		We found good software development methods

Client-server!

Prototyping!

UML!

JAD! RAD!

Spiral development!

Well, we will by the end of the year for sure

Development methods

_1240663603.ppt

Development methods

		We found good software development methods

		Outsourcing!

Well, we will by the end of the year for sure

Development methods

Outsourcing... That’ll work for sure.

When we review all the miraculous development methods of the last 50 years, it seems like we’re talking a lot about methods but we’re not saying much.

One title I proposed for this talk was...

_1240663607.ppt

Muss man babbeln

		Wovon man nicht sprechen kann, darüber muss man babbeln

		Waar men niet over kan spreken, daar moet men over babbelen

		What one cannot speak about one must babble over

		(What one cannot speak about one must keep silent over)

Muss man babbeln

Wovon man nicht sprechen kann, darüber muss man babbeln

I am sure we can all agree on that.

Or, in plain language for this audience:

Waar men niet over kan spreken, daar moet men over babbelen

Still confused?

What one cannot speak about one must babble over

This of course is an adaptation of the famous last sentence of Wittgenstein’s Tractatus: What one cannot speak about one must keep silent over

Wittgenstein was a wise philosopher – he didn’t try to be a software guru.

But there has been distinctly less babbling over maintenance.

So – what are software maintenance methods?

_1240663599.ppt

Development methods

		We found good software development methods

Object oriented!

Patterns!

Agile methods! Formal methods!

ERP! Architectures! Open source!

CMMI®!

		Well, we will by the end of the year for sure

Development methods

What miracles!

_1240663590.ppt

Development methods

		We found good software development methods

 Flowcharts!

 Structured Design!

 Structured Programming!

		Well, we will by the end of the year for sure

Development methods

_1240663593.ppt

Development methods

		We found good software development methods

 Flowcharts!

 Structured Design!

 Structured Programming!

 4GLs!

		Well, we will by the end of the year for sure

Development methods

_1240663587.ppt

Development methods

		We found good software development methods

 Flowcharts!

 Structured Design!

		Well, we will by the end of the year for sure

Development methods

_1240663568.ppt

Belady and Lehman: Programming System Dynamics

Belady and Lehman: Programming System Dynamics or the Metadynamics of Systems in Maintenance and Growth

9. L. A. Belady and M. M. Lehman, “Programming System Dynamics or the Metadynamics of Systems in Maintenance and Growth”, RC 3546, IBM Thomas J. Watson Research Center, Yorktown Heights, New York (1971).

Thus if I had read the Stevens-Myers-Constantine article when it came out in 1974 I would have been alerted to the Belady-Lehman article of 1971 and I would have saved myself a few years of thrashing before I began to think of a question that has occupied me for 30 or so years (about half the entire history of software)...

It is becoming increasingly important to the dala processing
industry to be able to pro ems and

CITED REFERI

1. This method has not been submitted to any formal IBM test. Potential users
should evaluate its usefulness in their own environment prior to implementa-
tion.

2. L. L. Constantine, Fundamentals of Program Design, in preparation for
publication by Prentice-Hall, Englewood Cliffs, New Jersey.

3. G.). Myers, Composite Design: The Design of Modular Programs, Techni-
cal Report TR00.2406, IBM, Poughkeepsie, New York (January 29, 1973).

4. G.). Myers, “Characteristics of composite design,” Datamation 19, No. 9,
100-102 (September 1973).

5. G. J. Myers, Reliable Software through Composite Design, to be published
Fall of 1974 by Mason and Lipscomb Publishers, New York, New York.

6. HIPO — Hierarchical Input-Process-Output documentation technique. Au-
dio education package, Form No. SR20-9413, available through any 1BM
Branch Office.

7. F. T. Baker, “Chief programmer team management of production program-
ming."” BM Systems Journal 11,No. 1, 56~73 (1972).

8. The use of the HIPO Hierarchy charting format is further illustrated in Fig-

ure 6, and its use in this paper was initiated by R. Ballow of the IBM Pro-

. L. A. Belady and M. M. Lehman, Programming System Dynamics or the

Metadynamics of Systems in Maintenance and Growth™, RC 3546, IBM
arch Center ktown Heights, New York (1971).

_1240663576.ppt

Development methods

		We already found good software development methods!

Development methods

We already found good software development methods!

_1240663580.ppt

Development methods

		We already found good software development methods

		Well, we will by the end of the year for sure!

Development methods

We already found good software development methods

Well, we will by the end of the year for sure!

_1240663572.ppt

Maintenance methods

		What are good software maintenance methods?

Methods

What are good software maintenance methods?

It seemed to me in 1977 that we ought to find good software maintenance methods.

For several reasons:

We could double our productivity – since as much effort goes into maintenance as into development.

We hadn’t found good software maintenance methods yet.

But we had found good software development methods.

And how much simpler, more secure, and more accurate they make software development!

_1240663557.ppt

Stevens, Myers, and Constantine: Structured design

		Stevens, Myers, and Constantine: Structured design

		W. P. Stevens, G. J. Myers, L. L. Constantine. Structured design. IBM Systems J., 13, 2, 1974, 115-139.

Stevens, Myers, and Constantine: Structured design

W. P. Stevens, G. J. Myers, L. L. Constantine. Structured design. IBM Systems J., 13, 2, 1974, 115-139.

I was interested to see, looking back at 1974 Stevens & al., that they write about ‘techniques for making coding, debugging, and modification easier, faster, and less expensive’. And ‘the ability to produce simple, changeable programs will become increasingly important’.

And look at this...

Structured design
by W. P. Stevens, G. J. Myers, and L. L. Constantine

a set of proposed general program design
hniques for making coding, debugging,
faster, and less expensive by reducing
ideas are the result of nearly ten years
a Constantine.” His results are presented here,
but the authors do not intend to present the theory and derivation
of the results in this paper. These ideas have been called compos-
ite design by Mr. Myers.*® The authors believe these program
design techniques are compatible with, and enhance, the docu-
mentation techniques of HIPO® and the coding techniques of
structured rogramming.’

nsiderations and

echniques always need to be balanced with
he system. But the ability to produce sim-
rams will become increasingly important as
mer’s time continues to rise.

_1240663563.ppt

CITED REFERENCES AND FOOTNOTES

CITED REFERENCES AND FOOTNOTES

‘It is becoming increasingly important to the data-processing industry to be able to produce more programming systems and produce them with fewer errors, at a faster rate, and in a way that modifications can be accomplished easily and quickly. Structured design considerations can help achieve this goal.’

In ‘CITED REFERENCES AND FOOTNOTES’...

‘1. This method has not been submitted to any formal IBM test. Potential users should evaluate its usefulness in their own environment prior to implementation.’

No, not that one (though it’s nice to know that at one time methods promoters made disclaimers), but this one...

It is becoming increasingly important to the dala processing
industry to be able to pro ems and

CITED REFERI

1. This method has not been submitted to any formal IBM test. Potential users
should evaluate its usefulness in their own environment prior to implementa-
tion.

2. L. L. Constantine, Fundamentals of Program Design, in preparation for
publication by Prentice-Hall, Englewood Cliffs, New Jersey.

3. G.). Myers, Composite Design: The Design of Modular Programs, Techni-
cal Report TR00.2406, IBM, Poughkeepsie, New York (January 29, 1973).

4. G.). Myers, “Characteristics of composite design,” Datamation 19, No. 9,
100-102 (September 1973).

5. G. J. Myers, Reliable Software through Composite Design, to be published
Fall of 1974 by Mason and Lipscomb Publishers, New York, New York.

6. HIPO — Hierarchical Input-Process-Output documentation technique. Au-
dio education package, Form No. SR20-9413, available through any 1BM
Branch Office.

7. F. T. Baker, “Chief programmer team management of production program-
ming."” BM Systems Journal 11,No. 1, 56~73 (1972).

8. The use of the HIPO Hierarchy charting format is further illustrated in Fig-

ure 6, and its use in this paper was initiated by R. Ballow of the IBM Pro-

. L. A. Belady and M. M. Lehman, Programming System Dynamics or the

Metadynamics of Systems in Maintenance and Growth™, RC 3546, IBM
arch Center ktown Heights, New York (1971).

_1240663549.ppt

Then a miracle occurs:

The 2007 Stevens Lecture on Software Development Methods

Nicholas Zvegintzov

zvegint@hotmail.com

11th European Conference on Software Maintenance and Reengineering

Thursday, March 22 2007, Amsterdam

“Then a miracle occurs”

The 2007 Stevens Lecture on Software Development Methods

Nicholas Zvegintzov

Zvegint@hotmail.com

11th European Conference on Software Maintenance and Reengineering

Thursday, March 22, 2007, Amsterdam

Intro: Stevens

I stand up tonight in order to prevent you going on the Conference Dinner Cruise on the Salonboot Prins van Oranje for as long as I can by delivering The 2007 Stevens Lecture on Software Development Methods. I know Dinner is coming up – but don’t worry, I had a snack already and I can go on as long as necessary.

The Stevens Lectures on Software Development Methods ‘focus on lessons learned and challenges, with an emphasis on advancing or analyzing the state of software methods and their direction for the future’.

This prestigious award lecture (that’s what it says here) is named in memory of Wayne Stevens (1944-1993).

His 1974 IBM Systems Journal article ‘Structured Design’ was a landmark and has been widely reprinted ever since.

5%

